PRELIMINARY DATA SHEET

SD1200

Analog-Interface XGA/SXGA TFT

LCD Display Controller

September 1998

SmartASIC, Inc.

SD1200 PRELIMINARY DATA SHEET

PRSD-1200-A

September 1998

Document	Revisions	Date
PRSD-1200-A	First Preliminary Datasheet	September 1998

Copyright 1998, SmartASIC, Inc. All Right Reserved

SmartASIC, Inc. reserves the right to change or modify the information contained herein without notice. It is the customer's responsibility to ensure he/she has the most recent revision of the user guide. SmartASIC, Inc. makes no warranty for the use of its products and bears no responsibility for any error or omissions, which may appear in this document.

SD1200

Analog-Interface XGA/SXGA TFT LCD Display Controller

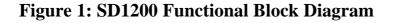
Features

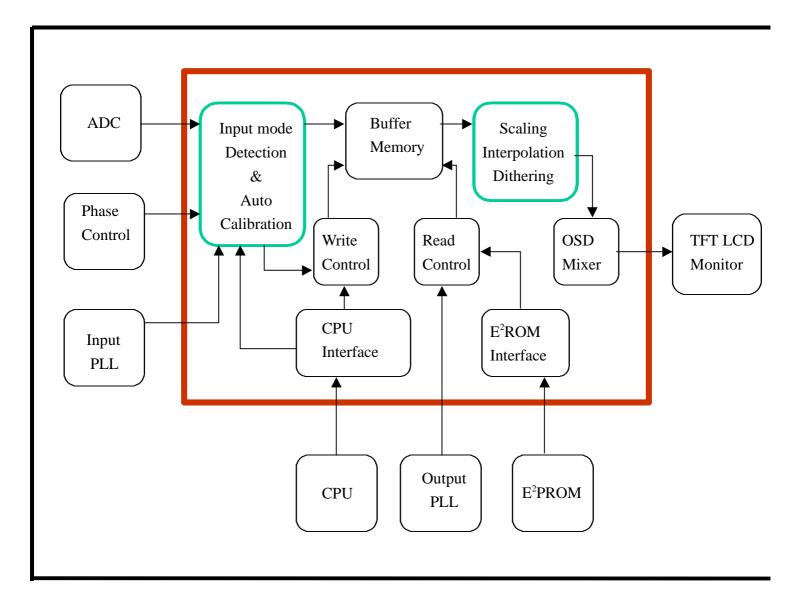
- Highly integrated analog interface XGA/SXGA TFT LCD Display Controller
- Handle both 24-bit and 48-bit sampled RGB input up to SXGA (1280x1024) @ 85Hz
- Support various PC graphics cards
- Drive 48-bit digital RGB output up to SXGA (1280x1024) @ 75Hz
- Support various TFT LCD panels
- Truly "Plug and Display" no special driver running on PC
- Implement proprietary *SmartDisplay* technology for
 - input mode detection and auto calibration
 - output image scaling and interpolation
 - 16.7 million true color support for 6 bit panel
 - robust detection and handling of invalid input modes
- Advanced input mode detection and auto calibration
 - input refresh rate detection
 - input format detection
 - input sync polarity detection
 - image expansion
 - input frequency detection
 - optimal sampling clock phase calibration
- Advanced image scaling and interpolation with
 - automatic image centering
 - automatic image expansion in both horizontal and vertical directions

- programmable horizontal and vertical expansion ratio
- programmable horizontal and vertical interpolation algorithm
- True color support for 6 bit panel
 - Proprietary dithering based on both intensity and spatial information
 - Optional frame modulation
- Robust handling of invalid input conditions
 - detect no input signal
 - detect input signal beyond specified acceptable range
 - output status indicators
 - generate output signal even when no input signal
- Support multiple TFT LCD panels
 - programmable output timing parameters to match specifications of various TFT LCD panels
 - support power On/Off sequence
 - Output signal is synchronized with the input signal with the same frame rate
- Low-cost system solution
 - no external frame buffer required
 - 2-wire I²C serial interface for EEPROM and CPU
 - programmable OSD mixer
 - direct interface to external ADC's and PLL's
 - 160 pin PQFP Package
 - 5.0V and 3.3V supply

1. OVERVIEW

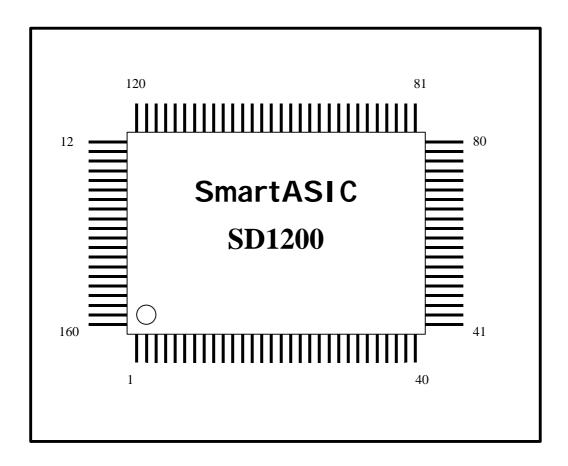
The SD1200 is an IC designed for analog-interface XGA/SXGA TFT LCD monitors. An analog-interface LCD monitor takes analog RGB signals from a graphic card of a personal computer, the exact same input interface as a conventional CRT monitor. This feature makes analog-interface LCD monitor a true replacement of a conventional CRT monitor.


The analog input RGB signals are first sampled by six channels of 8-bit A/D converters, and the 48-bit RGB data are then fed into the SD1200. The SD1200 is capable of performing automatic detection of the display resolution and timing of input signals generated from various PC graphic cards. No special driver is required for the timing detection, nor does any manual adjustment. The SD1200 then automatically scales the input image to fill the full screen of the LCD monitor. The SD1200 can interface with TFT LCD panels from various manufacturers by generating 48-bit RGB signal to the LCD panel based upon the timing parameters saved in the EEPROM.


The SD1200 provides two distinguished features to the TFT LCD monitor solution. The first one is "plug-and-play", and the second one is "cost-effective system solution". To be truly plug-and-display, the SD1200 performs automatic input mode detection and auto phase calibration, so that the LCD monitor can ensure the A/D converters' sample clock to be precisely synchronized with the input video data, and to preserve the highest image bandwidth for the highest image quality. Furthermore, the SD1200 can generate output video even when the input signal is beyond the specifications, or no input signal is fed.

For "cost-effective system solution", the SD1200 implements many system support features such as OSD mixer, error status indicators, 2-wire I²C serial interface for both EEPROM and host CPU interface, and low-cost IC package. Another important contributing factor is that SD1200 does not require external frame buffer memory for the automatic image scaling and synchronization.

The SD1200 can handle input signal up to SXGA (1280x1024) resolution at 75Hz refresh rate, and produce output signal at SXGA resolution at 75Hz refresh rate (subject to the limitation of LCD panel).


Figure 1 shows the block diagram of the SD1200 as well as the connections of important system components around the SD1200.

2. PIN DESCRIPTION

Figure 2: SD1200 package diagram

Symbol	PIN Number	Voltage	I/O	Description
B IN06	1	5	Ι	Input Color Blue
B_IN07	2	5	Ι	Input Color Blue
B_IN10	3	5	Ι	Input Color Blue
B_IN11	4	5	I	Input Color Blue
B_IN12	5	5	I	Input Color Blue
B_IN13	6	5	I	Input Color Blue
DATA_SEL	7	5	I	Select Input Odd/Even Data
B_IN14	8	5	I	Input Color Blue
B IN15	9	5	I	Input Color Blue
B_IN16	10	5	I	Input Color Blue
B_IN17	11	5	Ι	Input Color Blue
GND	12			Ground
HSYNC_I	13	5	I	Input HSYNC (active LOW)
VSYNC_I	14	5	Ι	Input VSYNC (active LOW)
MODE_IN0	15	5	I	Input Mode Select
11022_110	10	C C	-	1: double 24 bit RGB
				0: single 24 bit RGB
MODE_IN1	16	5	Ι	Device ID bit 4 for CPU Interface (Pull
				High Internally)
VDD_5V	17	5		+5V Power Supply
MODE_IN2	18	5	Ι	Device ID bit 5 for CPU Interface (Pull
				High Internally)
MODE_IN3	19	5	Ι	Device ID bit 6 for CPU Interface (Pull
				High Internally)
ROM_SCL	20	5	0	SCL in I ² C for EEPROM interface
ROM_SDA	21	5	I/O	SDA in I ² C for EEPROM interface
GND	22			Ground
CPU_SCL	23	5	Ι	SCL in I ² C for CPU interface
CPU_SDA	24	5	I/O	SDA in I ² C for CPU interface
PWM_CTL	25	5	0	PWM control signal (Detail description in
				PWM Operation Section)
CLK_1M	26	5	Ι	Free Running Clock (default: 1MHz)
VDD_5V	27	5		+5V Power Supply
CLK_1M_O	28	5	0	Feedback of free Running Clock
RESET_B	29	5	Ι	System Reset (active LOW)
R_OSD	30	5	Ι	OSD Color Red
G_OSD	31	5	Ι	OSD Color Green
B_OSD	32	5	Ι	OSD Color Blue
EN_OSD	33	5	Ι	OSD Mixer Enable
				=0, No OSD output
				=1,R_OUT[7:0]= {R_OSD repeat 8 times}
				G_OUT[7:0]= {G_OSD repeat 8 times }
			<u> </u>	B_OUT[7:0]= {B_OSD repeat 8 times }
SCAN_EN	34	5	1	Manufacturing test pin (NC)
TEST_EN	35	5	I	Manufacturing test pin (NC)
TEST_H	36	5	Ι	Manufacturing test pin (NC)
TST_DONE	37	5	0	Manufacturing test pin (NC)
FAIL_H	38	5	0	Manufacturing test pin (NC)
HSYNC_X	39	5	0	Default HSYNC generated by ASIC (active

able 1: SD1200 pin description (sorted by pin number)

SmartASIC, Inc. SD1200

				LOW)
VSYNC_X	40	5	0	Default VSYNC generated by ASIC (active
		_	_	LOW)
GND	41			Ground
FCLK0	42	5	0	Input PLL Feedback Clock
VCLK0	43	5	Ι	Input PLL Output Clock
FCLK1	44	5	0	Output PLL Feedback Clock
VCLK1	45	5	Ι	Output PLL Output Clock
HSYNC_O	46	3.3	0	Output HSYNC
VSYNC_O	47	3.3	0	Output VSYNC
DCLK_OUT	48	3.3	0	Output Clock to Control Panel
DE_OUT	49	3.3	0	Output Display Enable for Panel (active
				HIGH)
VDD_5V	50	5		+5V Power Supply
R_OUT0_E	51	3.3	0	Output Color Red Even Pixel
R_OUT1_E	52	3.3	0	Output Color Red Even Pixel
R_OUT2_E	53	3.3	0	Output Color Red Even Pixel
R_OUT3_E	54	3.3	0	Output Color Red Even Pixel
VDD_3.3V	55	3.3		+3.3V Power Supply
R_OUT4_E	56	3.3	0	Output Color Red Even Pixel
R_OUT5_E	57	3.3	0	Output Color Red Even Pixel
R_OUT6_E	58	3.3	0	Output Color Red Even Pixel
R_OUT7_E	59	3.3	0	Output Color Red Even Pixel
GND	60			Ground
R_OUT0_O	61	3.3	0	Output Color Red Odd Pixel
R_OUT1_O	62	3.3	0	Output Color Red Odd Pixel
R_OUT2_O	63	3.3	0	Output Color Red Odd Pixel
R_OUT3_O	64	3.3	0	Output Color Red Odd Pixel
VDD_5V	65	5		+5V Power Supply
R_OUT4_O	66	3.3	0	Output Color Red Odd Pixel
R_OUT5_O	67	3.3	0	Output Color Red Odd Pixel
R_OUT6_O	68	3.3	0	Output Color Red Odd Pixel
R_OUT7_O	69	3.3	0	Output Color Red Odd Pixel
GND	70			Ground
G_OUT0_E	71	3.3	0	Output Color Green Even Pixel
G_OUT1_E	72	3.3	0	Output Color Green Even Pixel
G_OUT2_E	73	3.3	0	Output Color Green Even Pixel
G_OUT3_E	74	3.3	0	Output Color Green Even Pixel
G_OUT4_E	75	3.3	0	Output Color Green Even Pixel
VDD_3.3V	76	3.3		+3.3V Power Supply
G_OUT5_E	77	3.3	0	Output Color Green Even Pixel
G_OUT6_E	78	3.3	0	Output Color Green Even Pixel
G_OUT7_E	79	3.3	0	Output Color Green Even Pixel
GND	80			Ground
G_OUT0_O	81	3.3	0	Output Color Green Odd Pixel
G_OUT1_O	82	3.3	0	Output Color Green Odd Pixel
G_OUT2_O	83	3.3	0	Output Color Green Odd Pixel
G_OUT3_O	84	3.3	0	Output Color Green Odd Pixel
VDD_5V	85	5		+5V Power Supply
G_OUT4_O	86	3.3	0	Output Color Green Odd Pixel
G_OUT5_O	87	3.3	0	Output Color Green Odd Pixel
G_OUT6_O	88	3.3	0	Output Color Green Odd Pixel
G_OUT7_O	89	3.3	0	Output Color Green Odd Pixel

SmartASIC, Inc.

SD1200

CND	00		<u>т</u>	
GND	90	2.2		Ground
B_OUT0_E	91	3.3	0	Output Color Blue Even Pixel
B_OUT1_E	92	3.3	0	Output Color Blue Even Pixel
B_OUT2_E	93	3.3	0	Output Color Blue Even Pixel
B_OUT3_E	94	3.3	0	Output Color Blue Even Pixel
B_OUT4_E	95	3.3	0	Output Color Blue Even Pixel
B_OUT5_E	96	3.3	0	Output Color Blue Even Pixel
B_OUT6_E	97	3.3	0	Output Color Blue Even Pixel
VDD_3.3V	98	3.3		+3.3V Power Supply
B_OUT7_E	99	3.3	0	Output Color Blue Even Pixel
GND	100	2.2		Ground
B_OUT0_O	101	3.3	0	Output Color Blue Odd Pixel
B_OUT1_O	102	3.3	0	Output Color Blue Odd Pixel
B_OUT2_O	103	3.3	0	Output Color Blue Odd Pixel
B_OUT3_O	104	3.3	0	Output Color Blue Odd Pixel
VDD_5V	105	5		+5V Power Supply
B_OUT4_O	106	3.3	0	Output Color Blue Odd Pixel
B_OUT5_O	107	3.3	0	Output Color Blue Odd Pixel
B_OUT6_O	108	3.3	0	Output Color Blue Odd Pixel
B_OUT7_O	109	3.3	0	Output Color Blue Odd Pixel
GND	110	_	-	Ground
R_IN00	111	5	I	Input Color Red
R_IN01	112	5	Ι	Input Color Red
R_IN02	113	5	I	Input Color Red
R_IN03	114	5	Ι	Input Color Red
VDD_5V	115	5		+5V Power Supply
R_IN04	116	5	Ι	Input Color Red
R_IN05	117	5	Ι	Input Color Red
R_IN06	118	5	Ι	Input Color Red
R_IN07	119	5	Ι	Input Color Red
GND	120		-	Ground
R_IN10	121	5	I	Input Color Red
R_IN11	122	5	I	Input Color Red
R_IN12	123	5	I	Input Color Red
R_IN13	124	5	Ι	Input Color Red
VDD_5V	125	5	T	+5V Power Supply
R_IN14	126	5	I	Input Color Red
R_IN15	127	5	I	Input Color Red
R_IN16	128	5	I	Input Color Red
R_IN17	129	5	I	Input Color Red
GND	130	-	_	Ground
G_IN00	131	5	I	Input Color Green
G_IN01	132	5	I	Input Color Green
G_IN02	133	5	I	Input Color Green
G_IN03	134	5	Ι	Input Color Green
VDD_5V	135	5	_	+5V Power Supply
G_IN04	136	5	I	Input Color Green
G_IN05	137	5	I	Input Color Green
ADC_CLK0	138	5	0	Sample Clock for ADC 0
G_IN06	139	5	I	Input Color Green
G_IN07	140	5	Ι	Input Color Green
GND	141			Ground

SmartASIC, Inc. SD1200

G_IN10	142	5	Ι	Input Color Green
G_IN11	143	5	Ι	Input Color Green
ADC_CLK1	144	5	0	Sample Clock for ADC 1
G_IN12	145	5	Ι	Input Color Green
G_IN13	146	5	Ι	Input Color Green
VDD_5V	147	5		+5V Power Supply
G_IN14	148	5	Ι	Input Color Green
G_IN15	149	5	Ι	Input Color Green
G_IN16	150	5	Ι	Input Color Green
G_IN17	151	5	Ι	Input Color Green
GND	152			Ground
B_IN00	153	5	Ι	Input Color Blue
B_IN01	154	5	Ι	Input Color Blue
B_IN02	155	5	Ι	Input Color Blue
B_IN03	156	5	Ι	Input Color Blue
VDD_5V	157	5		+5V Power Supply
B_IN04	158	5	Ι	Input Color Blue
B_IN05	159	5	Ι	Input Color Blue
GND	160			Ground

Symbol	PIN Number	Voltage	I/O	Description
R IN00	111	5		nput Color Red
R_IN01	112	5		nput Color Red
R IN02	112	5		nput Color Red
R IN03	113	5		nput Color Red
R_IN04	116	5		nput Color Red
R IN05	117	5		nput Color Red
R IN06	117	5		nput Color Red
R_IN07	119	5		nput Color Red
R IN10	121	5		nput Color Red
R_IN11	121	5		nput Color Red
R_IN12	122	5		nput Color Red
R_IN13	125	5		nput Color Red
R_IN14	124	5		nput Color Red
R_IN15	120	5		nput Color Red
R_IN16	127	5		nput Color Red
R IN17	120	5		nput Color Red
G_IN00	131	5		nput Color Green
G_IN01	131	5		nput Color Green
G IN02	132	5		nput Color Green
G IN03	133	5		nput Color Green
G IN04	134	5		nput Color Green
G IN05	130	5		nput Color Green
G IN05	137	5		nput Color Green
G_IN07	140	5		nput Color Green
G IN10	140	5		nput Color Green
G_IN10 G_IN11	142	5		nput Color Green
G_IN12	145	5		nput Color Green
G IN13	145	5		nput Color Green
G_IN13 G_IN14	148	5		nput Color Green
G_IN14 G_IN15	148	5		nput Color Green
G IN16	150	5		nput Color Green
G_IN10 G_IN17	150	5		nput Color Green
B_IN00	151	5		nput Color Blue
B_IN01	155	5		nput Color Blue
B IN02	154	5		nput Color Blue
B_IN02 B_IN03	155	5		nput Color Blue
B_IN03	158	5		nput Color Blue
B_IN04 B_IN05	158	5		nput Color Blue
B_IN05 B_IN06	139	5		nput Color Blue
B_IN00 B_IN07	2	5		nput Color Blue
B_IN07 B_IN10	3	5		nput Color Blue
B_IN10 B_IN11	4	5		nput Color Blue
B_IN11 B_IN12	5	5		nput Color Blue
B_IN12 B_IN13	6	5		nput Color Blue
B_IN15 B_IN14	8	5		1
	<u>8</u> 9	5		nput Color Blue
B_IN15				nput Color Blue
B_IN16	10	5		nput Color Blue
B_IN17	11	5	I II	nput Color Blue

Table 2: SD1200 pin description (sorted by function)

SmartASIC, Inc. SD1200

HSYNC_I	13	5	Ι	Input HSYNC (active LOW)		
VSYNC_I	14	5	Ι	Input VSYNC (active LOW)		
MODE_IN0	15	5	Ι	Input Volte (addre 20 H) Input Mode Select 1: double 24 bit RGB 0: single 24 bit RGB		
MODE_IN1	16	5	Ι	Device ID bit 4 for CPU Interface (Pull High Internally)		
MODE_IN2	18	5	Ι	Device ID bit 5 for CPU Interface (Pull High Internally)		
MODE_IN3	19	5	Ι	Device ID bit 6 for CPU Interface (Pull High Internally)		
ADC_CLK0	138	5	0	Sample Clock for ADC 0		
ADC_CLK1	144	5	0	Sample Clock for ADC 1		
R_OUT0_E	51	3.3	0	Output Color Red Even Pixel		
R_OUT1_E	52	3.3	0	Output Color Red Even Pixel		
R_OUT2_E	53	3.3	0	Output Color Red Even Pixel		
R_OUT3_E	54	3.3	0	Output Color Red Even Pixel		
R_OUT4_E	56	3.3	0	Output Color Red Even Pixel		
R_OUT5_E	57	3.3	0	Output Color Red Even Pixel		
R_OUT6_E	58	3.3	0	Output Color Red Even Pixel		
R_OUT7_E	59	3.3	0	Output Color Red Even Pixel		
R_OUT0_O	61	3.3	0	Output Color Red Odd Pixel		
R_OUT1_O	62	3.3	0	Output Color Red Odd Pixel		
R_OUT2_O	63	3.3	0	Output Color Red Odd Pixel		
R_OUT3_O	64	3.3	0	Output Color Red Odd Pixel		
R_OUT4_O	66	3.3	0	Output Color Red Odd Pixel		
R_OUT5_O	67	3.3	0	Output Color Red Odd Pixel		
R_OUT6_O	68	3.3	0	Output Color Red Odd Pixel		
R_OUT7_O	69	3.3	0	Output Color Red Odd Pixel		
G_OUT0_E	71	3.3	0	Output Color Green Even Pixel		
G_OUT1_E	72	3.3	0	Output Color Green Even Pixel		
G_OUT2_E	73	3.3	0	Output Color Green Even Pixel		
G_OUT3_E	74	3.3	0			
G_OUT4_E	75	3.3	0	Output Color Green Even Pixel		
G_OUT5_E	77	3.3	0	Output Color Green Even Pixel		
G_OUT6_E	78	3.3	0	Output Color Green Even Pixel		
G_OUT7_E	79	3.3	0	Output Color Green Even Pixel		
G_OUT0_O	81	3.3	0	Output Color Green Odd Pixel		
G_OUT1_O	82	3.3	0	Output Color Green Odd Pixel		
G_OUT2_O	83	3.3	0	Output Color Green Odd Pixel		
G_OUT3_O	84	3.3	0	Output Color Green Odd Pixel		
G_OUT4_O	86	3.3	0	Output Color Green Odd Pixel		
G_OUT5_O	87	3.3	0	Output Color Green Odd Pixel		
G_OUT6_O	88	3.3	0	Output Color Green Odd Pixel		
G_OUT7_O	89	3.3	0	Output Color Green Odd Pixel		
B_OUT0_E	91	3.3	0	Output Color Blue Even Pixel		
B_OUT1_E	92	3.3	0	Output Color Blue Even Pixel		
B_OUT2_E	93	3.3	0	Output Color Blue Even Pixel		

SmartASIC, Inc.

SD1200

B_OUT3_E	94	3.3	0	Output Color Blue Even Pixel
B_OUT4_E	95	3.3	0	Output Color Blue Even Pixel
B_OUT5_E	96	3.3	0	Output Color Blue Even Pixel
B_OUT6_E	97	3.3	0	Output Color Blue Even Pixel
B_OUT7_E	99	3.3	0	Output Color Blue Even Pixel
B_OUT0_O	101	3.3	0	Output Color Blue Odd Pixel
B_OUT1_O	102	3.3	0	Output Color Blue Odd Pixel
B_OUT2_O	103	3.3	0	Output Color Blue Odd Pixel
B_OUT3_O	104	3.3	0	Output Color Blue Odd Pixel
B_OUT4_O	106	3.3	0	Output Color Blue Odd Pixel
B_OUT5_O	107	3.3	0	Output Color Blue Odd Pixel
B_OUT6_O	108	3.3	0	Output Color Blue Odd Pixel
B_OUT7_O	109	3.3	0	Output Color Blue Odd Pixel
	- • •			
HSYNC_O	46	3.3	0	Output HSYNC
VSYNC_O	47	3.3	0	Output VSYNC
DCLK_OUT	48	3.3	0	Output Clock to Control Panel
DE_OUT	49	3.3	0	Output Display Enable for Panel (active
DL_001	т <i>у</i>	5.5		HIGH)
FCLK0	42	5	0	Input PLL Feedback Clock
VCLK0	43	5	I	Input PLL Output Clock
FCLK1	43	5	0	Output PLL Feedback Clock
VCLK1	45	5	I	Output PLL Output Clock
VCLKI	43	5	1	
DOM SCI	20	5	0	SCL in I ² C for EEPROM interface
ROM_SCL	20	5 5	-	
ROM_SDA	21	5	I/O	SDA in I ² C for EEPROM interface
		5	т	SCL in I ² C for CPU interface
CPU_SCL	23	5	I	
CPU_SDA	24	5	I/O	SDA in I ² C for CPU interface
	25	~		
PWM_CTL	25	5	0	PWM control signal (Detail description in
	24	_		PWM Operation Section)
CLK_1M	26	5	I	Free Running Clock (default: 1MHz)
CLK_1M_O	28	5	0	Feedback of free Running Clock
RESET_B	29	5	I	System Reset (active LOW)
HSYNC_X	39	5	0	Default HSYNC generated by ASIC (active
				LOW)
VSYNC_X	40	5	0	Default VSYNC generated by ASIC (active
				LOW)
R_OSD	30	5	Ι	OSD Color Red
G_OSD	31	5	Ι	OSD Color Green
B_OSD	32	5	Ι	OSD Color Blue
EN_OSD	33	5	Ι	OSD Mixer Enable
				=0, No OSD output
				=1,R_OUT[7:0]= {R_OSD repeat 8 times}
				$G_{OUT}[7:0] = \{G_{OSD} \text{ repeat 8 times } \}$
				B_OUT[7:0]= {B_OSD repeat 8 times }
SCAN_EN	34	5	1	Manufacturing test pin (NC) Manufacturing test pin (NC)
TEST H	36		Ι	

SmartASIC, Inc.

SD1200

FAIL_H	38	5	0	Manufacturing test pin (NC)
TST_DONE	37	5	0	Manufacturing test pin (NC)
TEST_EN	35	5	Ι	Manufacturing test pin (NC)
DATA_SEL	7	5	Ι	Select Input Odd/Even Data
VDD_5V	17	5		+5V Power Supply
VDD_5V	27	5		+5V Power Supply
VDD_5V	50	5		+5V Power Supply
VDD_5V	65	5		+5V Power Supply
VDD_5V	85	5		+5V Power Supply
VDD_5V	105	5		+5V Power Supply
VDD_5V	115	5		+5V Power Supply
VDD_5V	125	5		+5V Power Supply
VDD_5V	135	5		+5V Power Supply
VDD_5V	147	5		+5V Power Supply
VDD_5V	157	5		+5V Power Supply
VDD_3.3V	55	3.3		+3.3V Power Supply
VDD_3.3V	76	3.3		+3.3V Power Supply
VDD_3.3V	98	3.3		+3.3V Power Supply
GND	12			Ground
GND	22			Ground
GND	41			Ground
GND	60			Ground
GND	70			Ground
GND	80			Ground
GND	90			Ground
GND	100			Ground
GND	110			Ground
GND	120			Ground
GND	130			Ground
GND	141			Ground
GND	152			Ground
GND	160			Ground

3. FUNCTIONAL DESCRIPTION

The SD1200 has the following major function blocks:

- 1. Input mode detection & auto calibration block
- 2. Buffer memory and read/write control block
- 3. Image scaling, interpolation and dithering block
- 4. OSD mixer and LCD interface block
- 5. EEPROM interface block
- 6. CPU interface block

The following sections will describe the functionality of these blocks.

3.1. Input mode detection & auto calibration block

3.1.1. Supported input modes

The SD1200 accepts seven different input video modes:

- 640 x 350
- 640 x 400
- 720 x 400
- 640 x 480 (VGA)
- 800 x 600 (SVGA)
- 1024 x 768 (XGA)
- 1280 x 1024 (SXGA)

There is no frame rate restriction on the input modes. However, since the output signal is synchronized with the input signal at the same refresh rate. The input refresh rate has to be within the acceptable range of the LCD panel.

3.1.2. Input mode detection

The SD1200 can automatically detect the mode of the input signal without any user adjustment or driver running on the PC host or external CPU. This block

automatically detects polarity of input synchronization and the sizes of back porch, valid data window and the synchronization pulse width in both vertical and horizontal directions. The size information is then used not only to decide the input resolution, to generate the frequency divider for the input PLL, to lock the PLL output clock with HSYNC, but also to automatically scale the image to full screen, and to synchronize the output signal with the input signal.

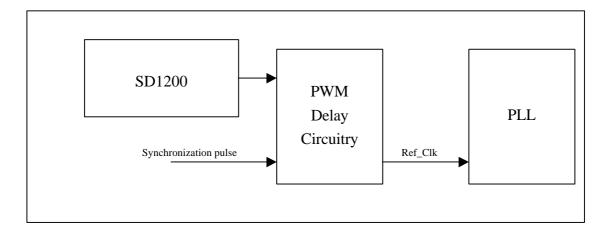
The detection logic is always active to automatically detect any changes to the input mode. Users can manually change the input mode information at run time through the CPU interface. Detail operation of the CPU interface is described in Section. "CPU Interface".

3.1.3. Auto calibration

The SD1200 can automatically calibrate the phase of the sample clock in order to preserve the bandwidth of input signal and get the best quality. The SD1200 implements a proprietary image quality function. During auto-calibration process, the SD1200 continues search for the best phase to optimize the image quality.

The output image may display some jitter and blurring during the auto-calibration process, and the image will become crisp and sharp once the optimum phase is found. User can change the sampling clock phase value by the external CPU. Detail operation of the CPU interface is described in Section. "CPU Interface".

The auto calibration process can be delayed and even disabled by the external CPU if system designer wants to have his/her own implementation.


3.1.4. PWM operation

The SD1200 implements a very unique algorithm to adjust the phase of the A/D converter's sampling clock. An external delay circuitry is required to compliment the SD1200 for the auto-calibration process. The SD1200 generates a Pulse-Width Modulated (PWM) signal to the external delay circuitry. The delay circuitry should insert a certain amount of time delay synchronization pulse based upon the width of the PWM signal. A brief circuit diagram for the PWM is shown in Figure 3.

The PWM signal from the SD1200 is a periodical signal with a period that is 511

times of the period of the free-running clock connected to the pin "CLK_1M". System manufacturers may select any frequency for the free running clock. The default clock frequency is 1MHz. System manufacturers also decide the unit delay for the external delay circuitry. The delay information is stored in the EEPROM. When the SD1200 wants to delay the synchronization pulse for N units of delay, it will output the PWM with the high time equal to (N * the period of the free-running clock), and with low time equal to $(511-N)^*$ the period of the free-running clock. When N=511, the PWM signal stays high all the time, and when N=0, the PWM signal is always low.

Figure 3: SD1200 PWM circuitry block diagram

3.1.5. Free Running Clock

As described in previous section, a free-running clock is needed for the SD1200. This clock is used for many of the SD1200's internal operations. PWM operation is one of them. System manufacturers can select the frequency of the free-running clock, and the default clock frequency is 1MHz. System manufacturer can use an oscillator to generate the free-running clock, and feed that clock directly to the pin "CLK_1M", or use a crystal connecting to "CLK_1M" and "CLK_1M_O".

3.2. Buffer memory and read/write control block

The SD1200 uses internal buffer memory to store a portion of the input image for image scaling and output synchronization. No external memory buffer is needed for the SD1200. The write control logic ensures the input data are stored into the right area of the buffer memory, and the read control logic is responsible to fetch the data from the buffer memory from the correct area and at the correct timing sequence. With the precise timing control of the write and read logic, the output image is appropriately scaled to the full screen, and the output signal is perfectly synchronized with the input signals.

3.3. Image scaling, interpolation and dithering block

The SD1200 supports both automatic image scaling and interpolation.

3.3.1. Image scaling

The SD1200 supports several different input modes, and the input image may have different sizes. It is essential to support automatic image scaling so that the input image is always displayed to the full screen regardless the input mode. The SD1200 scale the images in both horizontal and vertical directions. It calculates the correct scaling ratio for both directions based upon the LCD panel resolution, and the input mode and timing information produced by the "Input mode detection & auto calibration" block. The scaling ratio is re-adjusted whenever a different input mode is detected. The ratio is then fed to the buffer memory read control logic to fetch the image data with the right sequence and timing. Some of the image data may be read more than once to achieve scaling effect.

3.3.2. Image interpolation

The SD1200 supports image interpolation to achieve better image quality. A basic image scaling algorithm replicates the input images to achieve the scaling effect. The replication scheme usually results in a poor image quality. The SD1200 implements both linear interpolation and a proprietary interpolation algorithm. Through external micro-controller, users can chose among different interpolation algorithm.

3.3.3. Dithering

The SD1200 supports 16.7 million true colors for 6-bit panel. Two dithering algorithms are implemented and again users can chose between them through the external micro-controller.

3.4. OSD mixer and LCD interface

At the output stage, the SD1200 performs the OSD mixer function, and then generates 24-bit RGB signal to the LCD panel with the correct timing.

3.4.1. OSD mixer

In the OSD mixer block, the SD1200 mixes the normal output RGB signal with the OSD signal. The OSD output data is generated based on the "R_OSD", "G_OSD" and "B_OSD" pins as well as the "OSD Intensity" data in EEPROM entry. When the "EN_OSD" is active high, the OSD is active, and the SD1200 will send the OSD data to the LCD panel. The OSD has 16 different color schemes based on the combinations of the three OSD color pins and the "OSD Intensity" data. When R_OSD=1, and OSD_Intensity=0, the SD1200 will output 128 to the output red channel, R_OUT. When R_OSD=1, and OSD_Intensity=1, the SD1200 will output 255. The same scheme is used for G_OSD to G_OUT and for B_OSD to B_OUT.

3.4.2. LCD interface

The SD1200 support 48-bit RGB interface with XGA/SXGA LCD panels from various panel manufacturers. The LCD panel resolution and timing information is stored in the external EEPROM. The information in the EEPROM includes timing related to the output back porch, synchronization pulse width and valid data window. The timing information is used to generate the frequency divider for the output PLL, to lock the PLL output clock with HSYNC for the LCD data clock, and to synchronized the output VSYNC and input VSYNC.

3.5. EEPROM interface

As mentioned in previous sections, the external EEPROM stores much crucial information for the SD1200 internal operations. The SD1200 interfaces with the EEPROM through a 2-wire I²C serial interface. The suggested EEPROM device is an industry standard serial-interface EEPROM (24x08). The I²C interface scheme is briefly described here and detail description can be found in many public literatures.

3.5.1. I²C serial interface

The I²C serial interface used 2 wires, SCL and SDA. The SCL is driven by the SD1200, and used mainly as the sampling clock and the SDA is a bi-directional signal and used mainly for data signal. Figure 4 shows the basic bit definitions of I²C serial interface.

The I^2C serial interface supports random read and sequential read operations. Figure 5 and 6 shows the data sequences for random read and sequential read operations.

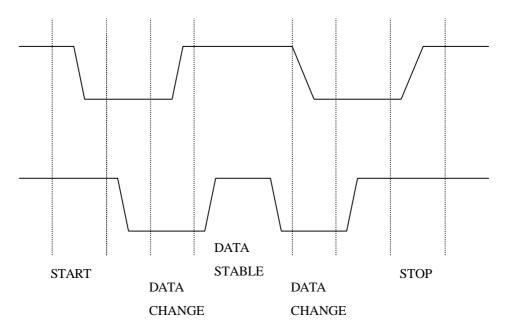
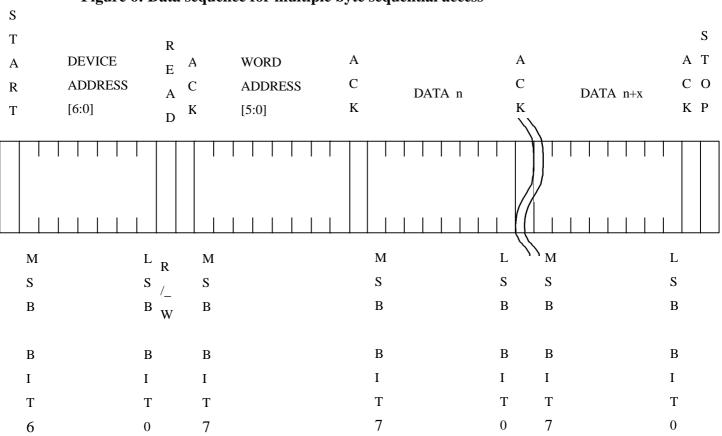



Figure 4: START, STOP AND DATA Definitions in I²C serial interface

S T A R	DEVICE ADDRESS [6:0]	R E A D	A C K	WORD ADDRESS [5:0]	A C K		DATA	A T C O K P
Μ		L R	М		L	М		L
S		S /_	S		S	S		S
В		^B W	В		В	В		В
В		В	В		В	В		В
Ι		Ι	Ι		Ι	Ι		Ι
Т		Т	Т		Т	Т		Т

Figure 5: Data sequence for single byte random access

Figure 6: Data sequence for multiple byte sequential access

3.5.2. EEPROM Contents

The contents of EEPROM are primarily dependent on the specifications of the LCD panel. SmartASIC provides suggested EEPROM contents for LCD panels from various panel manufacturers. The section presents all the entries in the EEPROM, and briefly describes their definitions. That allows the system manufacturers to have their own EEPROM contents to distinguish their monitors.

The EEPROM contents can be partitioned into 11 parts. The first 8 parts are input mode dependent. When the SD1200 detects the input mode, it will then load the information related to the detected mode from the EEPROM. The information in the 9th part is mainly for input mode detection as well as some threshold values for error status indicators. The 10th and 11th parts are look up table for interpolation parameters. The 9th, 10th and 11th parts are loaded in the SD1200 during the reset time.

- Part 1: 640x350 mode,
- Part 2: 640x400 mode,
- Part 3: 720x400 mode,
- Part 4: 640x480 mode,
- Part 5: 800x600 mode,
- Part 6: 1024x768 mode,
- Part 7: 1280x1024 mode, and
- Part 8: user defined mode
- Part 9: input mode detection and scaling related parameters
- Part 10: lookup table for horizontal interpolation
- Part 11: lookup table for vertical interpolation

Symbol W 640 640	720 640	800 1024	1280	INV	Description
x x	x x	x x	X	ALI	
350 400	400 480		1024	D	
	40H 60H				LCD VSYNC pulse width
	41H 61H			E1H	
	42H 62H				LCD VSYNC back porch
	43H 63H				(including VPW)
	44H 64H				LCD VSYNC back porch (source
05H 25H	45H 65H	85H A5H	C5H	E5H	equivalent)
					= VBP * Line Expansion and round
Target Skip1106H26H	161 661	96U A6U	C6H	E6U	up If VBP can not be converted into
	40H 00H 47H 67H				source evenly, the leftover is
0/11/2/11	4/11 0/11	0/11 A/11	C/II	L/11	converted into number of pixels
VSIZE 11 08H 28H	48H 68H	88H A8H	C8H	E8H	LCD number of lines
	49H 69H			E9H	
		8AH AAH			LCD HSYNC pulse width
		8BH ABH			F
		8CH ACH			LCD HSYNC back porch(including
0DH 2DH	4DH 6DH	8DH ADH			
HSIZE 11 0EH 2EH	4EH 6EH	8EH AEH	CEH	EEH	LCD number of columns
0FH 2FH	4FH 6FH	8FH AFH	CFH	EFH	
		90H B0H			LCD total number of pixels per line
		91H B1H			including all porches
		92H B2H			LCD total number of clocks per line
Source 13H 33H	53H 73H	93H B3H	D3H	F3H	(source equivalent) =
		0.477 5.477	5 (11		HTOTAL/Line Expansion
		94H B4H			Vertical source to destination
Expansion [6:3] [6:3]	[6:3] [6:3]	[6:3] [6:3]	[6:3]	[6:3]	scaling factor
					0: 1 to 1 1: 2 to 3
					2: 3 to 4
					3: 5 to 8
					4: 15 to 32
					5: 25 to 32
					6: 25 to 48
					7: 25 to 64
					8: 75 to 128
					9: 175 to 384
					10: 175 to 512
		94H B4H			Horizontal source to destination
Expansion [2:0] [2:0]	[2:0] [2:0]	[2:0] [2:0]	[2:0]	[2:0]	scaling factor
					0: 1 to 1 1: 2 to 4
					1: 2 to 4 2: 4 to 5
					3: 25 to 36
					4: 5 to 8
					5: 9 to 10
		1 1			
					6: 45 to 64

Part 1-8: Input Mode Dependent Data

Fog Factor	8	15H	35H	55H	75H	95H	B5H	D5H	F5H	Horizontal fogging factor
Horizontal										
Fog Factor	8	16H	36H	56H	76H	96H	B6H	D6H	F6H	Double of Horizontal fogging factor
2X										
Fog Factor	8	17H	37H	57H	77H	97H	B7H	D7H	F7H	Vertical fogging factor
Vertical										
Minimum	11	18H	38H	58H	78H	98H	B8H	D8H	F8H	Minimum input lines =
input lines		19H	39H	59H	79H	99H	B9H	D9H	F9H	(VSIZE + VBP)* Line Expansion
-										When the input has fewer lines than
										this value, it is considered as an
										ERROR, and INPUT_X status bit
										will be HIGH.
Maximum	11	1AH	3AH	5AH	7AH	9AH	BAH	DAH	FAH	Maximum input pixels per line.
input pixels		1BH	3BH	1BH	7BH	9BH	BBH	DBH		Auto clock recovery will not set
										input PLL divisor larger than this
										value.
Source	3	1CH	3CH	5CH	7CH	9CH	BCH	DCH	FCH	Source horizontal size upper 3 bits
HSIZE[11:8]		[6:4]	[6:4]	[6:4]	[6:4]	[6:4]	[6:4]	[6:4]	[6:4]	
Source	3	1CH	3CH	5CH	7CH	9CH	BCH	DCH	FCH	Source vertical size upper 3 bits
VSIZE[11:8]		[2:0]	[2:0]	[2:0]	[2:0]	[2:0]	[2:0]	[2:0]	[2:0]	
Source	8	1DH	3DH	5DH	7DH	9DH	BDH	DDH	FDH	Source horizontal size lower 8 bits
HSIZE[7:0]										
Source	8	1EH	3EH	5EH	7EH	9EH	BEH	DEH	FEH	Source vertical size lower 8 bits
VSIZE[7:0]										
Check sum	8	1FH	3FH	5FH	7FH	9FH	BFH	DFH	FFH	Sum of above 31 bytes (keep lower
										8 bits only)

Part 9: Input Mode Detection Data

Symbol	Width (bits)	Address	Description
Data low threshold	8	120H	Low water mark for valid data
			If the data is smaller than this threshold, it is
			considered LOW internally
Data high threshold	8	121H	High water mark for valid data
			If the data is larger than this threshold, it is considered
			HIGH internally
Edge threshold	8	122H	Minimum difference between the data value of two
			adjacent pixels to be considered as an edge
Calibration mode	2	123H [1:0]	This is to select different operation modes of internal
			phase calibration. The selection criterion is as follow:
			0: when input video signal has large overshot,
			it results in longest calibration time
			1: when input video signal has median overshot,
			it results in long calibration time
			2: when input video signal has normal overshot,
			it results in normal calibration time
			(recommended)
			3: when input video signal has no overshot,
			it results in shortest calibration time
Res0 threshold	10	124H-125H	Upper bound of the line number for 640x350 mode,
			and lower bound for 640x400
Res1 threshold	10	126H-127H	Upper bound of the line number for 640x400 mode,

SmartASIC, Inc. SD1200

			1 1 1 16 720 400
	10	10011 10011	and lower bound for 720x400
Res2 threshold	10	128H-129H	Upper bound of the line number for 720x400 mode,
	10	10.111.10011	and lower bound for 640x480
Res3 threshold	10	12AH-12BH	Upper bound of the line number for 640x480 mode,
			and lower bound for 800x600
Res4 threshold	10	12CH-12DH	Upper bound of the line number for 800x600 mode,
			and lower bound for 1024x768
Res5 threshold	10	12EH-12FH	Upper bound of the line number for 1024x768 mode,
			and lower bound for 1280x1024
Res6 threshold	10	130H-131H	Upper bound of the line number for 1280x1024 mode
			If the input has more line than this threshold, it is
		1001111 01	considered INVALID mode
	2	132H[1:0]	The polarity of input synchronization signals
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
	2	132H[3:2]	The polarity of input synchronization signals
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
	2	132H[5:4]	The polarity of input synchronization signals
Sync Polarity		1001117 (1	Bit 0 is for VSYNC and bit 1 is for HSYNC
	2	132H[7:6]	The polarity of input synchronization signals
Sync Polarity		1001111 01	Bit 0 is for VSYNC and bit 1 is for HSYNC
	2	133H[1:0]	The polarity of input synchronization signals
Sync Polarity	-	1001100.01	Bit 0 is for VSYNC and bit 1 is for HSYNC
	2	133H[3:2]	The polarity of input synchronization signals
Sync Polarity		100115 11	Bit 0 is for VSYNC and bit 1 is for HSYNC
	2	133H[5:4]	The polarity of input synchronization signals
Sync Polarity	0	10.411	Bit 0 is for VSYNC and bit 1 is for HSYNC
	8	134H	The maximum vertical back porch for input video
PWM unit delay	13	135H-136H	The unit delay used in the external PWM delay
			circuitry. If the free-running clock is 1MHz, and the
			intended unit delay is 0.2 ns (= $5,000$ MHz), then a
		10511 10011	value of $5,000$ MHz $/1$ MHz = $5,000$ is used here.
	22	137H-139H	Maximum time when input VSYNC is off before the
time			LINK_DWN pin turns ON (unit: clock period of the
			free running clock). If the free-running clock is
			1MHz, and the intended maximum time is 1 second,
			1MHz, and the intended maximum time is 1 second, then a value of $1,000,000 \text{ us}/ 1 \text{ us} = 1,000,000 \text{ is used}$
Manigung safaa h	16	12 4 11 12 11	1MHz, and the intended maximum time is 1 second, then a value of $1,000,000 \text{ us}/1 \text{ us} = 1,000,000 \text{ is used here.}$
	16	13AH-13BH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel
Maximum refresh rate	16	13AH-13BH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th
	16	13AH-13BH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of
rate			1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here
rate Maximum input	16	13AH-13BH 13CH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120
rate			1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock)
rate Maximum input			1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and
rate Maximum input			1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is
rate Maximum input			1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is used here.
rate Maximum input			1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is used here. If the input signal has a higher frequency than this
rate Maximum input frequency	8	13CH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is used here. If the input signal has a higher frequency than this value, the VCLK0_X status bit will turn ON.
rate Maximum input frequency			1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is used here. If the input signal has a higher frequency than this value, the VCLK0_X status bit will turn ON. Scale factor used when generate look up table for
rate Maximum input frequency Scale factor CE	8	13CH 13DH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD120 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is used here. If the input signal has a higher frequency than this value, the VCLK0_X status bit will turn ON. Scale factor used when generate look up table for current even pixel multiplication
rate Maximum input frequency Scale factor CE	8	13CH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD1200 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is used here. If the input signal has a higher frequency than this value, the VCLK0_X status bit will turn ON. Scale factor used when generate look up table for current even pixel multiplication Scale factor used when generate look up table for
rate Maximum input frequency Scale factor CE Scale factor CO	8	13CH 13DH	1MHz, and the intended maximum time is 1 second, then a value of 1,000,000 us/ 1 us = 1,000,000 is used here. Maximum refresh rate supported by the LCD panel If the intended maximum refresh rate is 75Hz, and th free-running clock is 1MHz, then a value of 1000000/75=133,333 is used here Maximum source clock rate supported by the SD1200 (unit: frequency of free-running clock) If the intended maximum clock rate is 60MHz, and the free-running clock is 1MHz, then a value of 60 is used here. If the input signal has a higher frequency than this value, the VCLK0_X status bit will turn ON. Scale factor used when generate look up table for current even pixel multiplication

			· · · · · · · · · · · · · · · · · · ·
Scale factor NO	8	140H	Scale factor used when generate look up table for next odd pixel multiplication
Offset factor CE	8	141H	Offset factor used when generate look up table for current even pixel multiplication
Offset factor CO	8	142H	Offset factor used when generate look up table for current odd pixel multiplication
Offset factor NE	8	143H	Offset factor used when generate look up table for next even pixel multiplication
Offset factor NO	8	144H	Offset factor used when generate look up table for next odd pixel multiplication
Scale factor V	8	145H	Scale factor used when generate look up table for line multiplication
Offset factor V	8	146H	Offset factor used when generate look up table for line multiplication
Minimum pixels per line for LCD	11	147H-148H	Minimum number of pixels per line for LCD panel
LCD polarity	4	149H[3:0]	Controls the polarity of output VSYNC, HSYNC, clock and display enable
			Bit0: 0: clock active high, 1: clock active low
			Bit1: 0: HSYNC active low, 1: HSYNC active high Bit2: 0: VSYNC active low, 1: VSYNC active high
			Bit4: 0: de active high, 1: de active low
Check sum	8	14AH	Sum of all part 9 bytes (keep only lower 8 bit)

Part 10: Horizontal Interpolation Lookup Table

Symbol	Width (bits)	Address	Description
Mapped value	8		This is the base table for all four horizontal interpolation lookup tables. Each table is then generated by multiply this value with corresponding scale factor and added with corresponding offset factor.
Check Sum	8	2C0H	Sum of all part 10 entry (only keep lower 8 bits)

Part 11: Vertical Interpolation Lookup Table

Symbol	Width (bits)	Address	Description
Mapped value	8		This is the base table for vertical interpolation lookup table. The vertical interpolation table is then generated by multiply this value with vertical scale factor and added with vertical offset factor.
Check Sum	8	3E0H	Sum of all part 10 entry (only keep lower 8 bits)

3.6. CPU interface

The SD1200 supports 2-wire I^2C serial interface to external CPU. The interface allows external CPU to access and modify control registers inside the SD1200. The I^2C serial interface is similar to the EEPROM interface, and the CPU is the host that drives the SCL all the time as the clock and for "start" and "stop" bits. The SCL frequency can be as high as 5MHz. The SDA is a bi-directional data wire. This interface supports random and sequential write operations for CPU to modify one or multiple control registers, and random and sequential read operations for CPU to read all or part of the control registers.

The lower 4 bits of device ID for SD1200 are fixed at "1010". The upper 3 bits are programmable through MODE_IN3 (pin 19), MODE_IN2 (pin 18) and MODE_IN1 (pin 15). This avoids any conflict with other I2C devices on the same bus.

The following table briefly describes the SD1200 control registers. External CPU can read these register to know the state of the SD1200 as well as the result of input mode detection and phase calibration. External CPU can modify these control registers to disable several SD1200 features and force the SD1200 into a particular state. When the CPU modifies the control registers, the new data will be first stored in a set of shadow registers, and then are copied into the actual control registers when the "CPU Control Enable" bit is set. When the "CPU Control Enable" bit is set, the external CPU will retain control and the SD1200 will not perform the auto mode detection and auto calibration.

The external CPU is able to adjust the size of the output image and move the output image up and down by simply changing the porch size and pixel and line numbers of the input signal. These adjustments can be tied to the external user control button on the monitor.

A set of four control registers are used to generate output signal when there is no input signal available to the SD1200, or the input signal is beyond the acceptable ranges. This operation mode is called standalone mode, which is very important for the end users when they accidentally select an input mode beyond the acceptable range of the SD1200, or when the input cable connection becomes loose for any reason. System

manufacturers can display appropriate OSD warning messages on the LCD panel to notify the users about the problem.

Symbol	Width	Mode	Address	Description
VBP Source	11	RW	0H-1H	Input VSYNC back porch (not include pulse
				width)
VSIZE Source	11	RW	2H-3H	Input image lines per frame
VTOTAL Source	11	RW	4H-5H	Input total number of lines including porches
HBP Source	11	RW	6H-7H	Input HSYNC back porch (not include pulse
				width)
HSIZE Source	11	RW	8H-9H	Input image pixels per line
HTOTAL Source	11	RW	AH-BH	Input total number of pixels per line including
				porches
Mode Source	3	RW	CH[2:0]	Input video format
				0: 640x350
				1: 640x400
				2: 720x400
				3: 640x480
				4: 800x600
				5: 1024x768
				6: 1280x1024 7: invalid
Clock Phase Source	0	DW	DH-EH	
VPW standalone	9 10	RW RW	FH-10H	Input sampling clock phase For standalone mode, the pulse width of VSYNC
VTOTAL standalone	10	RW	11H-12H	For standalone mode, total number of line per
VIOTAL statuatone	10	K W	11П-12П	frame
HPW standalone	10	RW	13H-14H	For standalone mode, HSYNC active time in us
HTOTAL standalone	10	RW	15H-16H	For standalone mode, HSYNC cycle time in us
Disable auto	1	RW	17H[7]	Disable auto calibration for this mode
calibration for mode	1	IC	1,11(,]	1: disable
640x350				0: enable
Delay auto calibration	15	RW	17H[6:0]-	The number of frames need to be skipped before
for mode 640x350			18H	starting auto calibration for this mode
Disable auto	1	RW	19H[7]	Disable auto calibration for this mode
calibration for mode				1: disable
640x400				0: enable
Delay auto calibration	15	RW	19H[6:0]-	The number of frames need to be skipped before
for mode 640x400			1AH	starting auto calibration for this mode
Disable auto	1	RW	1BH[7]	Disable auto calibration for this mode
calibration for mode				1: disable
720x400				0: enable
Delay auto calibration	15	RW		The number of frames need to be skipped before
for mode 720x400			1CH	starting auto calibration for this mode
Disable auto	1	RW	1DH[7]	Disable auto calibration for this mode
calibration for mode				1: disable
640x480			40154.07	0: enable
Delay auto calibration	15	RW	1DH[6:0]-	The number of frames need to be skipped before
for mode 640x480			1EH	starting auto calibration for this mode

Table 3: SD1200 Control Registers

SmartASIC, Inc. SD1200

D'aulti auto	1	DW	1511(7)	Distly sets with a first for this and t
Disable auto	1	RW	1FH[7]	Disable auto calibration for this mode
calibration for mode				1: disable
800x600	15	DIV	1511(6.0)	0: enable
Delay auto calibration	15	RW	1FH[6:0]-	The number of frames need to be skipped before
for mode 800x600			20H	starting auto calibration for this mode
Disable auto	1	RW	21H[7]	Disable auto calibration for this mode
calibration for mode				1: disable
1024x768				0: enable
Delay auto calibration	15	RW	21H[6:0]-	The number of frames need to be skipped before
for mode 1024x768			22H	starting auto calibration for this mode
Disable auto	1	RW	23H[7]	Disable auto calibration for this mode
calibration for mode				1: disable
1280x1024				0: enable
Delay auto calibration	15	RW	23H[6:0]-	The number of frames need to be skipped before
for mode 1280x1024			24H	starting auto calibration for this mode
Disable auto	1	RW	25H[7]	Disable auto calibration for this mode
calibration for mode			- [.]	1: disable
INVALID				0: enable
Delay auto calibration	15	RW	25[6:0]-	The number of frames need to be skipped before
for mode INVALID	10	1000	26H	starting auto calibration for this mode
Bypass Sync Polarity	1	RW	27H[7]	Bypass Input SYNC polarity detection (default 0)
Dypass Sync I Glarity	1	IX W	2/11[/]	1: bypass input SYNC polarity detection (default o)
				0: detect input SYNC polarity and make them
Enable SYNC Check	7	RW	2711(4.01	negative polarity
Enable SYNC Check	/	KW	27H[6:0]	Enable SYNC polarity check during input mode
				detection (default all 0).
				1: enable SYNC polarity based mode detection
				0: disable SYNC polarity based mode detection
				bit 0: 640x350
				bit 1: 640x400
				bit 2: 720x400
				bit 3: 640x480
				bit 4: 800x600
				bit 5: 1024x768
				bit 6: 1280x1024
Dithering Enable	1	RW	28H[7]	Enable dithering for 6 bit panel (default 0)
				1: enable dithering
				0: disable dithering
Frame Modulation	1	RW	28H[6]	Enable frame modulation for 6 bit panel (default
Enable				0)
				1: enable frame modulation
				0: disable frame modulation
Horizontal	1	RW	28H[5]	Enable horizontal interpolation (default 0)
Interpolation Enable				1: enable horizontal interpolation
-				0: disable horizontal interpolation
Vertical Interpolation	1	RW	28H[4]	Enable vertical interpolation (default 0)
Enable				1: enable vertical interpolation
				0: disable vertical interpolation
Horizontal Rounding	1	RW	28H[3]	Enable horizontal rounding (default 0)
Enable	-			1: enable horizontal rounding
Lindoit				0: disable horizontal rounding
Vertical Rounding	1	RW	28H[2]	Enable vertical rounding (default 0)
Enable	1	17. 18	2011[2]	1: enable vertical rounding
Linable				•
Homigrantal T-1.1.	1	DW	201111	0: disable vertical rounding
Horizontal Table	1	RW	28H[1]	Enable horizontal Table Lookup (default 0)

SmartASIC, Inc. SD1200

				1 11 1			
Lookup Enable				1: enable horizontal Table Lookup			
				0: disable horizontal Table Lookup			
Vertical Table	1	RW	28H[0]	Enable vertical Table Lookup (default 0)			
Lookup Enable				1: enable vertical Table Lookup			
				0: disable vertical Table Lookup			
HSYNC Threshold	1	RW	29H[4]	Enable detection of short lines (IBM panel only,			
Enable				default 0)			
				1: Enable such detection			
				0: disable such detection			
OSD Intensity	1	RW	29H[3]	OSD intensity selection			
-				0: half intensity			
				1: full intensity			
Load ALL EEPROM	1	RW	29H[2]	Should be kept low most time. A high pulse will			
	-		->[-]	force SD1200 to reload all EEPROM entries			
Load Mode	1	RW	29H[1]				
Dependent EEPROM	-		->[-]	force SD1200 to reload mode dependent			
- ·r ·····				EEPROM entries			
CPU control enable	1	RW	29H[0]	External CPU control enable			
	-		_>[•]	0: disable external CPU control. SD1200 can write			
				control registers, but CPU only read control			
				registers.			
				1: enable external CPU control. CPU can			
				read/write control registers. SD1200 cannot write			
				control registers			
Status 0	8	R	2AH	Read only internal status registers			
2	5	- •		1: indicate error status			
				0: indicate normal status			
				Bit 0: EEPROM vertical lookup table loading			
				Bit 1: EERPOM horizontal lookup table loading			
				Bit 2: EEPROM mode dependent entries loading			
				Bit 3: EEPROM calibration entries loading			
				Bit 4: input has too few lines			
				Bit 5: no input video			
				Bit 6: input data clock is too fast			
				Bit 7: refresh rate exceed LCD panel specification			
Status 1	4	R	2BH[3:0]	Internal auto calibration state			
Status I	4	N	2DH[3.0]	internal auto canoration state			

4. ELECTRICAL SPECIFICATION

This section presents the electrical specifications of the SD1200.

4.1. Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VCC	Power Supply	-0.3 to 6.0	V
VIN	Input Voltage	-0.3 to VCC + 0.3	V
VOUT	Output Voltage	-0.3 to VCC +0.3	V
TSTG	Storage Temperature	-55 to 150	°C

4.2. **Recommended Operating Conditions**

Symbol	Parameter	Min.	Тур.	Max.	Units
VCC	Commercial Power Supply	4.75	5.0	5.25	V
VCC	Industrial Power Supply	4.5	5.0	5.5	V
VIN	Input Voltage	0	-	VCC	V
TJ	Commercial Junction	0	25	115	°C
	Operating Temperature				
TJ	Industrial Junction Operating	-40	25	125	°C
	Temperature				

4.3. General DC Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
IIL	Input Leakage	no pull – up or	-1		1	μΑ
	Current	pull - down				
IOZ	TRI-state Leakage		-10		10	μA
	Current					
CIN	Input Capacitance			3		ρF
COUT	Output capacitance			3		ρF
CBID3	Bi-directional			3		ρF
	buffer capacitance					

Note: The capacitance above does not include PAD capacitance and package capacitance. One can estimate pin capacitance by adding pad capacitance, which is about $0.5 \ rF$ and the package capacitance

4.4. DC Electrical Characteristics for 3.3 V Operation

(Under Recommended Operation Conditions and $VCC = 3.0 \sim 3.0 \text{ v}$, $IJ = 0^{\circ}C$ to +115°C)							
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
VIL	Input low voltage	CMOS			0.3*VCC	V	
VIH	Input high Voltage	CMOS	0.7*VCC			V	
VT-	Schmitt trigger negative going threshold voltage	COMS		1.22		V	
VT+	Schmitt trigger positive going threshold voltage	COMS		2.08		V	
VOL	Output low voltage	IOH=2,4,8,12, 16,24 mA			0.4	V	
VOH	Output high voltage	IOH=2,4,8,12, 16,24 mA	2.4			V	
RI	Input pull-up /down resistance	VIL=0V or VIH=VCC		75		KΩ	

(Under Recommended Operation Conditions and Vcc = $3.0 \sim 3.6V$, T_J = 0° C to +115°C)

4.5. DC Electrical Characteristics for 5V Operation

(Under Recommended Operation Conditions and $\sqrt{CC}=4.75 \times 5.25$, $TJ=0^{\circ}$ C to $\pm 115^{\circ}$ C)							
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
VIL	Input low voltage	COMS			0.3*VCC	V	
VIH	Input high voltage	COMS	0.7*VCC			V	
VIL	Input low voltage	TTL			0.8	V	
VIH	Input high voltage	TTL	2.0			V	
VT-	Schmitt trigger negative going threshold voltage	CMOS		1.84		V	
VT+	Schmitt trigger Positive going threshold voltage	COMS		3.22		V	
VT-	Schmitt trigger negative going threshold voltage	TTL		1.10		V	
VT+	Schmitt trigger positive going threshold voltage	TTL		1.87		V	
VOL	Output low voltage	IOL=2,4,8,16,24mA			0.4	V	
VOH	Output high voltage	IOH=2,4,8,16,24 mA	3.5			V	
RI	Input pull-up / down resistance	VIL=0V or VIH=VCC		50		KΩ	

5. PACKAGE DIMENSIONS

6. ORDER INFORMATION

Order Code	Temperature	Package	Speed
SD1200	Commercial	160-pin PQFP	60MHz
	0° C ~ 70° C	14 x 20 (mm)	

SmartASIC, Inc. WORLDWIDE OFFICE

U.S.A. (Headquarter) 2674 N. First Street, Suite 112 San Jose, CA 95134 U.S.A. Tel : 1-408-383-1818 Fax : 1-408-383-1819 Asia Pacific 13F, No. 11, Chung-Shan N. RD. Taipei, Taiwan R.O.C. Tel : 886-2-2542-5169 Fax : 886-2-2542-5166

@Copyright 1998, SmartASIC, Inc.

This information in this document is subject to change without notice. SmartASIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. SmartASIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.